第一章 勾股定理 课后练习题答案 说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面; “⊙”,表示“森哥马”, §,¤,♀,∮,≈ ,均表示本章节内的类似符号。 §1.l 探索勾股定理 随堂练习 1.A 所代表的正方形的面积是625;B 所代表的正方形的面积是144。 文库分享网(www.Wkfxw.com),全免费下载
2.我们通常所说的29 英寸或74cm 的电视机,是指其荧屏对角线的长度,而不 是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差. 1.1 知识技能 1.(1)x=l0;(2)x=12. 2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm). 问题解决 12cm 2 。 1.2 知识技能 1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长). 数学理解 2.提示:三个三角形的面积和等于一个梯形的面积: 联系拓广 3.可以将四个全等的直角三角形拼成一个正方形. 随堂练习 12cm、16cm. 习题1.3 问题解决 1.能通过。. 2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后 剪下△OBC 和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位 置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中 正方形ABOF 和正方形CDEO 的面积和。即(B’C’) 2 =AB 2 +CD 2 :也就是BC 2 =a 2 +b 2 。, 这样就验证了勾股定理 §l.2 能得到直角三角形吗 随堂练习 l.(1) (2)可以作为直角三角形的三边长. 2.有4 个直角三角影.(根据勾股定理判断) 数学理解 2.(1)仍然是直角三角形;(2)略;(3)略 问题解决 4.能. §1.3 蚂蚁怎样走最近 13km 提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在 习题 1.5 知识技能 1.5lcm. 问题解决 2.能. 3.最短行程是20cm