文库摘要:
微积分课后答案
习题1—1解答 1. 设yxxyyxf
),(,求)
,(1),,(),1,1(),,(yxfyxxyfyxfyxf 解yxxyyxf
),(;x
xyyyxfyxyxxyfxyxyyxf222),(1;),(;1)1,1( 2. 设yxyxflnln),(,证明:),(),(),(),(),(vyfuyfvxfuxfuvxyf
)
,(),(),(),(lnlnlnlnlnlnlnln)
ln)(lnln(ln)ln()ln(),(vyfuyfvxfuxfv
yuyvxuxvuyxuvxyuvxyf 3. 求下列函数的定义域,并画出定义域的图形:
(1);11),(22
yxyxf
(2);
copyright www.WKFXW.com